Riesz–Haviland criterion for incomplete data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

An Akaike Information Criterion for Model Selection in the Presence of Incomplete Data Title: an Aic for Model Selection with Incomplete Data

We derive and investigate a variant of AIC, the Akaike information criterion, for model selection in settings where the observed data is incomplete. Our variant is based on the motivation provided for the PDIO (\predictive divergence for incomplete observation models") criterion of Shimodaira variant diiers from PDIO in its \goodness-of-t" term. Unlike AIC and PDIO, which require the computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2011.02.035